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Abstract—Within just four years, the blockchain-based De-
centralized Finance (DeFi) ecosystem has accumulated a peak
total value locked (TVL) of more than 253 billion USD. This
surge in DeFi’s popularity has, unfortunately, been accompanied
by many impactful incidents. According to our data, users,
liquidity providers, speculators, and protocol operators suffered
a total loss of at least 3.24 billion USD from Apr 30, 2018
to Apr 30, 2022. Given the blockchain’s transparency and
increasing incident frequency, two questions arise: How can we
systematically measure, evaluate, and compare DeFi incidents?
How can we learn from past attacks to strengthen DeFi security?

In this paper, we introduce a common reference frame to
systematically evaluate and compare DeFi incidents, including
both attacks and accidents. We investigate 77 academic papers, 30
audit reports, and 181 real-world incidents. Our data reveals
several gaps between academia and the practitioners’ community.
For example, few academic papers address “price oracle at-
tacks” and “permissonless interactions”, while our data suggests
that they are the two most frequent incident types (15% and
10.5% correspondingly). We also investigate potential defenses,
and find that: (i) 103 (56%) of the attacks are not executed
atomically, granting a rescue time frame for defenders; (ii)
bytecode similarity analysis can at least detect 31 vulnerable/23
adversarial contracts; and (iii) 33 (15.3%) of the adversaries
leak potentially identifiable information by interacting with
centralized exchanges.

I. INTRODUCTION

Blockchain-based Decentralized Finance (DeFi) ecosystem
has attracted a surge in popularity since the beginning of 2020.
The peak total value locked (TVL) for DeFi surpassed 253
billion USD on Dec 2, 2021, with Ethereum (145 billion, 57%
TVL) and BNB Smart Chain (19.8 billion, 8% TVL) sharing
the majority of DeFi’s activity [1]. While DeFi certainly
provides many protocols inspired by traditional finance such as
cryptocurrency exchanges [2]–[4], lending platforms [5], [6],
and derivatives [7], novel constructs known as flash loans [8]
and atomic composable DeFi trading [9] emerged. Unfortu-
nately, these very intertwined DeFi systems, coupled with the
already well-studied vulnerability-prone smart contracts [10]–
[18], broadened the threat surface of DeFi protocols. We
identify that from Apr 30, 2018 to Apr 30, 2022, so-called
“DeFi incidents” have accumulated to a total loss of 3.24
billion USD. Particularly exciting to interdisciplinary schol-
ars, these harmful incidents cover a wide variety of system
layers, including the network, consensus, smart contract and
DeFi protocol, as well as external auxiliary services such as
off-chain oracles, cross-chain bridges, centralized exchanges
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Fig. 1: Section II presents a DeFi reference frame, with a five
layer system and threat model overview, allowing to categorize
real-world incidents, academic works, and audit reports (cf.
Section III). Section IV studies the collected DeFi incidents
with statistical analysis. Section V shows how to identify
adversarial and victim contracts, how to front-run adversaries,
and how to trace adversarial funds. The paper concludes with
a discussion in VI, related works in VII and a closure in VIII.

etc. Understanding DeFi incidents hence requires a vertical
understanding of all relevant system layers and architectures.

For the first time in history, the information security commu-
nity has access to a transparent, broad, timestamped, and non-
repudiable dataset of million-dollar security-related incidents.
In this work, we leverage the blockchain as an open dataset
and systematize our findings with the following contributions:
• DeFi Reference Frame: We provide the first framework

for reasoning about DeFi system and threat models. We
outline a wide spectrum of adversarial goals, assumptions,
prior knowledge, capabilities, as well as common causes
for potentially harmful DeFi incidents to create a standard
model for related works (cf. Section II-A and II-B).

• Gap Between Attackers and Defenders: We analyze 181
DeFi incidents on Ethereum and BNB Smart Chain over
a time frame of four years and structure the incidents,
related academic papers, and security audit reports into a
comprehensive taxonomy. We discover that academia and
industry practices are underdeveloped with respect to the
incident cause “unsafe DeFi protocol dependencies”, when
compared to the practices of in-the-wild adversaries.

• Incident Defense: We investigate possible defense mecha-
nisms against DeFi incidents. We show that SoTA similarity
analysis can detect vulnerable and adversarial contracts. For
instance, we identify 31/23 exactly matching vulnerable/ad-
versarial contracts (i.e., bytecode similarity score of 100%)
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when compared to previously known incidents. We also
discover that 103 (56%) of the attacks are not executed
atomically, granting a rescue time frame for defenders.

• Tracing Source of Funds: By tracking pre-incident adver-
sarial footprints, we discover that 12(7.3%) and 21(8.0%)
of the adversaries directly withdraw funds from exchange
wallets, on Ethereum and BNB Smart Chain, respectively.
Similarly, 55(21%) and 12(4.6%) of the attack funds stem
directly from the US-sanctioned Tornado Cash mixer.

II. DEFI REFERENCE FRAME

Bitcoin is the first widely adopted permissionless system to
allow users to send and receive financial value without the use
of a third-party intermediary [19]. While Bitcoin also intro-
duced the concept of smart contracts, more developer-friendly
smart contract primitives [20] empowered the wide adoption
of DeFi. DeFi currently provides a wide range of financial
services such as exchanges [21], lending/borrowing [22]–
[25], stablecoins [26], pegged tokens, price oracles [27], [28],
mixing services [29], flash loans [8], yield farming [30],
portfolio management, insurance [31], governance [32] etc.
Flash loans allow traders to instantaneously request access
to cryptocurrencies worth billions of USD. This is achieved
through the creative use of the blockchain’s transaction atom-
icity property, through which a loan is not granted if the
loan is not paid back with the due interests. Such convenient
and programmable access to substantial capital has lowered
the barrier of entrance for practical DeFi traders, as well
as broaden the threat surface [8]. Because permissionless
blockchains such as Bitcoin and Ethereum are known to not
offer anonymity, but rather pseudonymity, alternative privacy-
preserving blockchains emerged. These alternative blockchains
break the linkability of addresses, by shuffling assets through
an anonymity set. Notable solutions include ZCash which is
based on zero-knowledge proofs [33], and Monero which is
based on ring signatures and confidential transactions [34],
[35]. Additionally, mixers operating as applications on existing
blockchains emerged, such as Tornado Cash [29], Typhoon
Network and AMR [36]. An extended background on DeFi, as
well as a comparison to centralized finance (CeFi), is provided
by related work [37]. In the following, we present a five-layer
system model which is applicable to all DeFi incidents, as
well as a threat model taxonomy based on various adversarial
utilities, goals, knowledge, and capabilities.

A. System Model

As Figure 2 shows, our system model consists of five
layers. The network layer enables data transmission between
and among system layers. The blockchain consensus and
smart contract layers enable financial services such as cryp-
tocurrency trades to be performed without the use of trusted
intermediaries. The protocol layer is a collection of DeFi
protocols that are deployed and built on the smart contract
layer. Note that on a permissionless blockchain, any DeFi user
can create or deploy financial service protocols. Furthermore,
DeFi protocols may rely on auxiliary services to increase the
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Fig. 2: High-level systematization of Decentralized Finance.
DeFi is built on smart contract enabled blockchains, where
auxiliary services help to ensure the overall efficiency, stability,
and usability of the ecosystem. The network layer enables data
transmission between and among system layers.

entire financial ecosystem’s efficiency, stability, and usability.
We proceed to introduce the key components in each layer:

(i) Network Layer (NET):
• Network Communication Infrastructure: A communica-

tion protocol is a set of rules that allows two or more nodes
in a system to communicate over a physical medium [38].
Users must rely on communication protocols such as
TCP/IP, DNS, and BGP to interact with DeFi, whether
directly through their own blockchain nodes or indirectly
through third-party auxiliary services.

• Blockchain and Peer-to-Peer (P2P) Network: Blockchain
network protocols instruct nodes on how to join, exit, and
discover other nodes in the P2P network. A blockchain node
may become unresponsive at any point in time, and related
works observed frequent node churn [39]. Blockchain net-
works typically instruct each node to connect with many
peers while also configuring a timeout to disconnect from
non-responsive peers to ensure the network’s connectivity.

• Front-running as a Service (FaaS): Independent of the
public blockchain P2P network, emerging centralized trans-
action propagation services offer an alternative option for
traders to communicate to miners (e.g., Flashbots1, Eden
network2, Bloxroute3, and Ethermine4). FaaS services allow
DeFi traders to submit a bundle that consists of one or more
transactions directly to FaaS miners without a broadcast on
the P2P network. FaaS services may in addition provide
bundle-level atomic state transition5, where the entire bundle
is either executed successfully in the exact order that the
transactions are provided, or fails collectively. Furthermore,
FaaS traders are required to place a single sealed bid for the
priority inclusion of the entire bundle, without observing
the bid from other DeFi traders (i.e., sealed-bid auction).
FaaS miners prioritize transaction bundles with the highest
average bid at the top of the next mined block.

1Flashbots: https://blocks.flashbots.net/
2Eden network: https://www.edennetwork.io/
3Bloxroute: https://bloxroute.com/
4Ethermine private RPC: https://ethermine.org/private-rpc
5This is different from transaction-level state transition in SC layer
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(ii) Consensus Layer (CON):
• Consensus Mechanism: A consensus mechanism is a fault-

tolerant mechanism in blockchain systems, which assist
blockchain nodes to achieve the required agreement on a
single data value or network state. The blockchain consensus
mechanism typically consists of the following components:
– A Sybil attack-resistant leader election protocol, such

as Proof-of-Work (PoW) for Ethereum or Proof-of-Stake
(PoS) for BNB Smart Chain;

– A consensus protocol to synchronize the latest chain state
(e.g., the longest chain with most difficulty); and

– A CON incentive mechanism, which aims to encourage
benign consensus activity. The block reward for instance,
compensates every successful block appended to the main
chain. Transaction fees are paid by transaction issuers to
sequencers for inclusion in specific blocks and positions,
and, lastly blockchain extractable value (BEV) and miner
extractable value (MEV), is potential extractable revenue
left untouched [9], [40]–[44]. Transaction fees are typi-
cally enforced to be paid in the native blockchain coin.

• Nodes and Their Operation Protocol: A blockchain node
may be responsible for one or several tasks: (i) transaction
sequencing, specifying the order of transactions within a
block; (ii) block generation; (iii) data verification; and (iv)
data propagation. The two common types are:
– Sequencer nodes, also known as miners in PoW

blockchains, or validators in PoS blockchains, capture all
four of the above responsibilities. Sequencers can insert,
omit and reorder transactions in blocks they generate
within the scope allowed by the protocol;

– Ordinary nodes only perform blockchain data propaga-
tion and may perform data verification.

(iii) Smart Contract Layer (SC):
Despite the existence of different data storage structures

(e.g., directed acyclic graph [45], sharding [46]–[49], etc.),
SoTA smart contract enabled blockchains order their transac-
tions as a linear sequence in order to achieve deterministic
state transition [50]. In the following, we denote non-generic
SC components with the asterisk mark (*). The remaining SC
components are applicable to any DeFi systems.

• Transactions: A user specifies financial operations within a
transaction to request blockchain state transitions. SC layer
typically supports transaction-level atomic state transition,
where all financial operations within the same transaction
either execute in their entirety, or fail collectively.

• State: DeFi system state S specifies: (i) the cryptocurrency
asset balances of users, (ii) the blockchain information, such
as timestamps, coinbase addresses, block numbers, block
gas limits (maximum computation unit per block), as well
as (iii) the DeFi application state.

• State Transition: T (s ∈ S, tx ∈ TX) → S is the state
transition function returning a new state after executing tx,
where TX denotes the set of all valid DeFi transactions.

• Smart Contract: A smart contract is code that is translated

into one or several state transition functions, which can
then be triggered by a transaction. Smart contracts can also
trigger the functions of other contracts. Upon deployment,
a constructor function may initialize the contracts’ state.

• Block State Transition*: Both Ethereum and BNB smart
chain record transactions with an ordered list of blocks. We
denote B as the set of blocks, and use bi ∈ B to denote
a block at height i. Each block bi may include a list of n
transactions, denoted by {tx0bi , . . . , tx

n
bi
}, n ≥ 0. A block

state S(bi+1) stems from the sequential execution of all
transactions in block bi+1 on S(bi) (cf. Equation 1).

S(bi+1) = T (. . . T (T (S(bi), tx
0
bi+1

), tx1bi+1
) . . .) (1)

• SC and Layer 2 Blockchain (L2) Incentive Mechanism*:
DeFi protocols can operate on so-called L2 systems, such
as side-chains6, commit-chains [51] or its inspired successor
optimistic-rollups [52], and zk-rollups7. Because L2 systems
are created on top of Layer 1 blockchains (also known as
L1, e.g, Ethereum and BNB Smart Chain), L2 systems often
implement their consensus incentive mechanisms on L1
blockchains’ SC layer to encourage benign activities [53].

(iv) DeFi Protocol Design Layer (PRO):
• Cryptocurrency Protocols: DeFi supports a variety of asset

standards, which define a common set of rules and interfaces
for the transfer and approval of cryptocurrency assets (e.g.,
ERC-20 [54]). DeFi protocols may, however, deviate from
the common standard by proposing a newer variant with
domain-specific features. The Ampleforth protocol is an
example of a custom asset standard, which dynamically
adjusts its total token supply to maintain a stable price (i.e.,
stablecoins) [55]. Newer standards may remain backward
compatible, while extending the feature set (e.g., ERC-777
enables the injection of state transitions, i.e., hooks, during
transfer calls [56]). Note that backward-compatible stan-
dards may however violate the security assumptions of
existing protocols, thus empowering novel attack vectors.

• Financial Protocols: While DeFi protocols may appear
inspired by traditional financial services, the blockchains’
unique features (e.g., transparency, atomicity, and discrete
batch transaction execution) enable novel designs. For in-
stance, unlike CeFi, DeFi platforms are notably intertwined
through atomic composability. For instance, leveraged liq-
uidity mining protocols such as Alpha Homora [57] and Har-
vest Finance [58] integrate automated market makers (i.e.,
Uniswap [2]) and lending platforms (i.e., Compound [6]).

• Protocol Layer Incentive Mechanism: DeFi protocols may
introduce PRO incentive mechanisms to encourage desired
user behavior. One example is the airdrop of governance
tokens in exchange for providing liquidity in decentralized
exchanges [59], [60] (e.g., Sushiswap8 and Curve9.).

6For example, Polygon network (https://polygon.technology/)
7For example, zkSync (https://zksync.io/)
8Sushiswap staking: https://app.sushi.com/stake
9Curve staking: https://resources.curve.fi/crv-token/staking-your-crv
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Capability Description Knowledge

C1
NET A may control network service providers (e.g., DNS). K3

C2
NET A may manipulate incoming messages to deceive a node’s perception of current state (e.g., eclipse attacks [61]). K1 or K3

C3
NET A may censor or delay the transmission of messages. For example in selfish mining, A may not broadcast the blocks appended to the competing chain [62]. K1 or K3

C4
NET A may transmit transactions to miners using FaaS. K1

C1
CON A may fork or append on a forked chain in an attempt to catch up and overwrite the longest chain. K2

C2
CON A may censor mempool transaction temporarily. K2

C3
CON A may (i) include, exclude, or re-order transactions within its blocks if A is/colludes with a sequencer, or (ii) engage in front-/back-running [40], [41], [43]. K1 or K2

C1
SC A may simulate state transition off-chain (cf. Equation 1) with any arbitrary transactions on forked blockchain states, instead of issuing transactions on-chain. K1

C1
PRO A may use mixer services to break account linkability. K1

C2
PRO A may borrow, use, and return liquidity from a decentralized cryptocurrency pool within a single atomic transaction using a flash loan [8]. K1

C3
PRO A may compose the state transition from multiple DeFi protocols (composability). K1

C4
PRO A may compose all state transitions required in one single transaction, and execute atomically. K1

C5
PRO A may deploy or utilise a customised contract, which mimics the function interface (i.e., abi) of one or many DeFi protocols. K1

C1
3RD A may manipulate external oracle data [14]. K3

C2
3RD A may compromise the wallet passphrase of specific DeFi users, operators and etc. K3

TABLE I: Adversarial capabilities and knowledge level at each layer of our system model.

Raw on-chain data

Raw P2P network data

Public side channel

Public data analysis

Private mempool

Sequencing rules

Next block early
access

Oracle update early
access

External price early
access

Wallet passphrase access

Other miscellaneous K3

Knowledge

4 4 4 4 8 ∆ 8 8 8 8 8 Public (K1)
4 4 4 4 4 4 4 8 8 8 8 Sequencer (K2)
4 4 4 4 8 8 8 ∆ ∆ ∆ ∆ Insider (K3)

TABLE II: Categorization of adversarial knowledge levels.
“4” has access, “8” cannot access, “∆” may have access.

(v) Auxiliary Service Layer (AUX):
Auxiliary services refer to any entity that is required or

which facilitates DeFi’s efficiency, but does not belong to
any of the four above-mentioned system layers (i.e., NET,
CON, SC, and PRO). For example, an operationally active
DeFi protocol implementation may consist of: (i) front-end
code; (ii) project developers realizing the protocol designs; (iii)
“operators” with administrative powers, such as the privilege
to deploy the code, upgrade the protocol, freeze or cease the
activity of the operative DeFi protocol; (iv) off-chain oracle
services which sync price data from centralized exchanges to
on-chain smart contracts, etc.

B. Threat Model Taxonomy

In the following we provide a holistic view of the adversarial
utilities, goals, knowledge and capabilities, to engender a
common reference frame which we subsequently apply in
Section III to relatively compare all observed DeFi attacks.

(i) What is a DeFi Incident: An incident refers to a series
of actions that result in an unexpected financial loss to one or
more of the following entities: (i) users; (ii) liquidity providers;
(iii) speculators; or (iv) operators. We classify incidents into
the following two types:

• Attacks: An adversary, A, may exploit vulnerabilities, in
an attempt to disable, delay, or alter a DeFi protocol’s
expected state transition. Despite the fact that vulnerabilities
exist on all five system layers, DeFi vulnerabilities are most
commonly found in the following three layers (cf. Table III):

1) SC Layer Vulnerabilities result from coding mistakes,
such as arithmetic error, casting error, inconsistent access
control, function reentrancy, etc;

2) PRO Layer Vulnerabilities may resemble financial mar-
ket manipulation instead of traditional system vulner-
abilities (i.e., protocol design flaws, such as unsafe
external protocol dependency or interactions). Yet, the
practitioners’ community as well as related works [8]
classify market manipulations as attacks, which neces-
sarily require a vulnerable system or system state; and

3) AUX Layer Vulnerabilities, which includes both oper-
ational vulnerability (e.g., off-chain oracle manipula-
tion, compromised private key, etc.) and “information
asymmetry” attacks (e.g., backdoor, honeypot, phishing,
etc.). Generally speaking, we observe that users may not
always (or may not be able to) inspect and understand a
DeFi protocol smart contract before providing financial
assets, let alone evaluating its security and risks [63],
[64]. As such, a user’s understanding of a contract opera-
tion may be mostly based on marketing communications,
rather than the factual contract source code, leading the
user to unforeseen or unexpected circumstances.

• Accidents: Any incident that does not explicitly involve
proactive adversaries is classified as a DeFi accident. For
example, a user’s fund may become permanently locked in
a contract due to unintentional coding mistakes.

(ii) Adversarial Utility and Goal: Throughout this work, we
assume that A is a rational agent aiming to maximize its utility.
We categorize utility into the following two categories:

• U1-Monetary: The most common utility we find is of
monetary nature. We define the monetary utility function
as the total increase in market value of A’s cryptocurrency
asset portfolio, which A aims to maximize.

• U2-Non-monetary: A may instead maximize non-monetary
utilities, such as sense of accomplishment, or reputation.
DeFi white hat hackers (also known as ethical hackers) are
an example of a non-monetary adversary, as they attack in
an attempt to minimize the loss from DeFi incidents.
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(iii) Adversarial Knowledge: Table II differentiates between
the following three types of adversarial knowledge.
• K1-Public: A can access public information, including: (i)

Raw on-chain data such as blocks, uncle blocks, trans-
actions, accounts, balances, and deployed smart contract
bytecode; (ii) Raw network data, such as P2P network trans-
actions, pending blocks, discarded stale blocks, blockchain
node IP addresses, port numbers, client version strings, etc;
(iii) Public side channel, such as, open-source smart contract
code, social media/chat messages; (iv) Public data analysis,
such as inferred network topology, estimated sequencer
location, and decompiled smart contract bytecode [65].

• K2-Sequencer: A obtains the following information, if A
is/colludes with a sequencer: (i) Pending transactions from
private communication channels; (ii) Transaction ordering
logic for the corresponding sequencer, including bribery
preferences; (iii) Early access to block state before broadcast
if the corresponding sequencer generates the next block.

• K3-Insider: Privileged information asymmetry may occur
for example if A has early access to external market prices,
oracle updates, or the wallet passphrases of an operator10.

(iv) Adversarial Capabilities: Table I outlines the adversarial
capabilities and required knowledge. Note that A with dif-
fering levels of knowledge may be able to achieve the same
capability. Sequencers, for example, can control the transaction
order of their generated blocks (K2), whereas A without
sequencer knowledge can also perform front-/back-running by
competing on the public blockchain P2P network (K1).

III. DATA

In this section we present our methodology to sample a
dataset of “works under investigation”, including research
papers, security tools (i.e., intrusion detection, intrusion pre-
vention and vulnerability detection), audit reports, and real-
world incidents. We manually label which incident types each
work addresses (cf. Table III and IX). Our dataset serves as
the foundation for the analysis in Sections IV, V and VI.

Academic Papers: We identify relevant papers in eight of the
top security, software engineering, and programming language
conferences (i.e., SSP, CCS, NDSS, USENIX, ICSE, ASE,
POPL, PLDI) from 2018 to 2021. Our methodology first
crawls papers using Google Scholar’s keyword search11, and
then performs backward and forward reference searches to
find additional relevant works. Our dataset omits: (i) papers
irrelevant to DeFi, such as Bitcoin specific attacks or Monero
privacy; and (ii) DeFi related papers that do not address any
particular type of incidents, such as contract patching [66],
model checking [67], bug bounties [68], and reverse engineer-
ing [65]. In total, our dataset captures 7 relevant surveys and

10See Section II-A for the definition of an operator.
11With at least one of the following keywords: [”smart contract”, ”Decen-

tralized Finance”, ”DeFi”, ”automated market maker”, ”AMM”,”decentralized
exchange”, ”DEX”, ”price oracle”, ”miner extractable value”, ”MEV”,
”blockchain extractable value”, ”BEV”, ”Ethereum”, ”ETH”, ”BNB Smart
Chain”, ”Binance Smart Chain”, ”BSC”]

SoKs, 29 security tools, and 42 attack papers. We manually
label the incident types addressed in each academic paper and
cross-validate our labels against the related works section.

Audit Reports: We collect and manually inspect 30 recent
public audit reports from 6 security testing companies (Beosin,
PeckShild, Slowmist, Consensys, Certik, Trial of Bits). We
notice that the reports collected perform manual auditing and
may not explicitly disclose what the auditors examined. For
example, while each of the six companies checked the com-
mon vulnerability “inconsistent access control” in at least one
audit report, only 19 of the 30 (63%) audit reports explicitly
state it. For reproducibility and objectiveness, we can only be
certain that an audit has addressed an incident type, if it: (i)
explicitly warns about the risk of a potential incident, or (ii)
explicitly states that the code passed the check of an incident
type. This methodology, however, leads to an underestimation
of the absolute number of incident types addressed in the audit
reports12. Note that we are only attempting to quantify whether
practitioners address certain incident types less frequently than
the others, and therefore this unbiased underestimation should
have no significant impact on our analysis.

Incidents: Our dataset consists of 117 and 69 incidents on
Ethereum and BSC respectively (in total 181 incidents) over a
period of four years from Apr 30, 2018 to Apr 30, 2022. These
incidents are gathered from the following three sources13:
(i) Rekt News; (ii) Slowmist; and (iii) Cryptosec. We ex-
clude non-DeFi incidents, such as blockchain-based gambling
and gaming applications. The incidents of which we cannot
identify the adversary are also excluded. We construct the
following features for each of the incident:
• Incident Type and Cause: We manually label the type and

cause of each incident (cf. Table III for incidents taxonomy,
which is further discussed in Section VI). It should be noted
that we may associate one incident with multiple types or
causes across multiple system layers.

• Adversaries: When we can identify an incident’s adver-
saries, we manually classify adversarial goal, knowledge,
and capability based on our reference frame (cf. Section II).

• Averaged Total Monetary Loss (in USD): The most per-
ceptible impact of harm is direct monetary loss. We collect
the total monetary loss reported by the aforementioned data
sources, where the victim can be either users, liquidity
providers, speculators, or protocol operators. When appli-
cable, we cross-validated the loss with on-chain transaction
data, and then remove sources that report incorrect loss14.

• Cumulative Abnormal Return (CAR): CAR reflects harm
by measuring how token price responds to an incident. We

12As an example, Trial of Bits does check for PRO layer incidents in other
audit reports, such as sandwich in TOB-Computable-018 (https://github.com
/trailofbits/publications/blob/master/reviews/computable.pdf), replay in
TOB-HERMEZ-014 (https://github.com/trailofbits/publications/blob/master/
reviews/hermez.pdf), etc., but are not included in our sampled dataset.

13Correspondingly: (i) https://rekt.news/; (ii) https://hacked.slowmist.io/en/;
and (iii) https://cryptosec.info/defi-hacks/

14We rely on Uniswap, Sushiswap, Pancakeswap and Bakery swap as our
price oracles when validating on-chain transaction
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TABLE III: DeFi incidents taxonomy. We label the incident types that each academic paper and auditing report address. We also group the incidents that occur in
the wild. Despite that this table focuses on Ethereum and BSC, we anticipate the taxonomy remains generic and thus applicable to all DeFi enabled blockchains.
l - Incident type addressed; n - Incident type checked (likely with tools); o - Incident cause checked (likely with tools); m - Incident type checked (manually).
Note that we can only be sure that an incident type has been addressed if an auditing report: (i) explicitly warns of the risk of a potential incident, or (ii) explicitly
states that the code passed the check of an incident type. We visualize the gaps using a heat map, where a darker colour indicates a greater frequency of occurrences.

Incident Cause Incident Type
Academic Papers (We abbreviate Usenix Security as UNX) Audit Reports Gap Visualization

SoKs, Surveys Tools Papers Boesin PeckShield SlowMist Consensys Certik Trail of Bits

[1
0]

[1
1]

[1
2]

[1
3]

[1
4]

[1
5]

[1
6]

[7
1]

U
N

X
’2

1
[7

2]
U

N
X

’2
0

[7
3]

U
N

X
’2

0
[7

4]
U

N
X

’1
8

[7
5]

SS
P’

22
[9

]S
SP

’2
1

[7
6]

SS
P’

21
[7

7]
SS

P’
21

[7
8]

SS
P’

20
[7

9]
SS

P’
20

[8
0]

C
C

S’
20

[8
1]

C
C

S’
19

[8
2]

C
C

S’
18

[8
3]

N
D

SS
’2

1
[8

4]
N

D
SS

’2
0

[8
5]

N
D

SS
’1

9
[8

6]
N

D
SS

’1
8

[8
7]

IC
SE

’2
0

[8
8]

IC
SE

’1
9

[8
9]

A
SE

’2
1

[9
0]

A
SE

’2
0

[9
1]

A
SE

’1
8

[9
2]

A
SE

’1
8

[9
3]

[9
4]

[9
5]

[9
6]

[9
7]

[9
8]

[9
9]

U
N

X
’2

1
[1

00
]U

N
X

’2
1

[1
01

]U
N

X
’2

1
[1

02
]U

N
X

’1
9

[1
03

]U
N

X
’1

9
[4

1]
SS

P’
22

[1
04

]S
SP

’2
1

[1
05

]S
SP

’2
1

[4
0]

SS
P’

20
[1

06
]S

SP
’2

0
[1

07
]S

SP
’1

9
[1

08
]C

C
S’

21
[1

09
]C

C
S’

21
[1

10
]C

C
S’

21
[1

11
]C

C
S’

21
[1

12
]C

C
S’

21
[1

13
]C

C
S’

20
[1

14
]C

C
S’

19
[1

15
]C

C
S’

19
[1

16
]C

C
S’

18
[1

17
]C

C
S’

18
[1

18
]N

D
SS

’2
1

[1
19

]N
D

SS
’2

0
[1

20
]N

D
SS

’2
0

[1
21

]I
C

SE
’2

1
[1

22
]I

C
SE

’2
0

[1
23

]I
C

SE
’2

0
[1

24
]A

SE
’2

1
[1

25
]A

SE
’2

0
[1

26
]P

O
PL

’1
8

[1
27

]P
L

D
I’

20
[1

28
]P

L
D

I’
20

[1
29

]P
L

D
I’

20
[1

30
]

[1
31

]
[1

32
]

[1
13

]
[1

33
]

[1
34

]
[1

35
]

[1
36

]
[8

]
[1

37
]

[1
38

]
[1

39
]

[1
40

]
[1

41
]

[1
42

]
[1

43
]

[1
44

]
[1

45
]

[1
46

]
[1

47
]

[1
48

]
[1

49
]

[1
50

]
[1

51
]

[1
52

]
[1

53
]

[1
54

]
[1

55
]

[1
56

]
[1

57
]

[1
58

]
[1

59
]

[1
60

]
[1

61
]

[1
62

]
[1

63
]

[1
64

]
[1

65
]

[1
66

]
[1

67
]

#
of

In
ci

de
nt

s
(%

of
In

ci
de

nt
s)

#
of

pa
pe

rs
(%

of
pa

pe
rs

)

#
of

au
di

ts
(%

of
au

di
ts

)

N
et

w
or

k

Network layer transparency Transaction content transparency l l l l l 5(12%)
Propagation transparency l l l 3(7%)

Improper peer discovery / churning logic Eclipse l l l l l l l 7(16%)
Sybilattack

Network congestion Intentional DoS l l l l 1(1%) 4(9%)
Unintentional DoS 1(1%)

Exposed internet service Sensitive DNS servers l l l 2(1%) 3(7%)
Unreliable BGP messages l l l 3(7%)

Other network vulnerabilities - l 1(2%)

C
on

se
ns

us

Blockchain protocol vulnerabilities -
Unstable incentive mechanism Majority / 51% attack l l l l l 5(12%)

Block reorganization l l 2(5%)
Selfish mining l l l l l l l 7(16%)
Double spending l l l l l l 6(14%)
Feather forking l l 2(5%)
Bribery attacks l l 2(5%)
Mining difficulty adjustment l
Other incentive-based incidents l l l l l l 6(14%)

Unfair sequencing Sequencer transaction order manipulation l l 2(5%)
Transaction censoring l 1(2%)

Other consensus vulnerabilities - l l l 3(7%)

Sm
ar

t
C

on
tr

ac
t

State transition design mistakes Under-priced opcodes l l 2(5%)
Outdated compiler version n n n n n n n n n n m 11(37%)

Untrusted or unsafe calls Direct call to untrusted contract l l l n n n n n n n n n n n n n n m m 4(2%) 3(7%) 16(53%)
Reentrancy l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l n n n n n n n n n n n n n n m m 12(7%) 31(72%)16(53%)
Delegatecall / call injection l l l l l l l l l l l l l n n n n n mm m 2(1%) 13(30%) 8(27%)

Coding mistake Unhandled or mishandled exception l l l l l l l l l l l l l l l l l l l l l l m m 22(51%) 2(7%)
Locked or frozen asset l l l l l l l l l l l m m 1(1%) 11(26%) 2(7%)
Integer overflow or underflow l l l l l l l l l l l l l l l l l l l l l n n n n n n n n n n n n n n mm 21(49%)16(53%)
Absence of coding logic or sanity check l l l l l l l l l mm m m mmm m m mmm 44(24%) 9(21%) 12(40%)
Short address l l l l n n n n 4(9%) 4(13%)
Casting l l l l m 4(9%) 1(3%)
Unbounded or gas costly operation l l l l l l l m 7(16%) 1(3%)
Arithmetic mistakes l l l l n n n n n n n n n n n n n n m mmm mmmm m 2(1%) 4(9%) 23(77%)
Other coding mistakes l l l l l l l l m m mmm m mmmmm 6(3%) 8(19%) 11(37%)

Access control mistake Inconsistent access control l l l l l l l l l l l l l l n n n n n n n n n n n n n n m m m m 5(3%) 14(33%)18(60%)
Visibility error and unrestricted action l l l l l l l l l n n n n n n n n n n n n n n m 6(3%) 9(21%) 15(50%)

Other smart contract vulnerabilities - l l l l l l l l l l l l l l l l l l l l n n n n n n n n n n n n n n mm m mmm mm 1(1%) 20(47%)22(73%)

Pr
ot

oc
ol

Transaction order dependency mistake Front-running l l l l l l l l l l l l o o o o o o o o o o o o o o m m m 2(1%) 12(28%)17(57%)
Back-running l l l l l l l o o o o o o o o o o o o o o 7(16%) 14(47%)
Sandwiching l l l l o o o o o o o o o o o o o o m 4(9%) 15(50%)
Other transaction order dependency l l l 3(7%)

Replayable design Transaction / strategy replay l l n n n n n n n n n 2(5%) 9(30%)
Block state dependency mistake Randomness l l l l l l n n n n n 6(14%) 5(17%)

Other block state dependency l l l l l l l l l l l l l mm 13(30%) 2(7%)
Permissionless interaction Camouflage a token contract l 9(5%) 1(2%)

Camouflage a non-token contract 1(1%)
Unsafe dependency On-chain oracle manipulation l l l l 28(15%) 4(9%)

Governance attack l l 3(2%) 2(5%)
Token standard incompatibility l l 9(5%) 2(5%)
Liquidity borrow, purchase, mint, deposit l l 9(5%) 2(5%)
Unsafe call to phantom function 1(1%)
Other unsafe DeFi protocol dependency m 7(4%) 1(3%)

Unfair or unsafe interaction Unfair slippage protection l l l 3(2%) 3(7%)
Unfair liquidity providing m 4(2%) 1(3%)
Unsafe or infinite token approval
Other unfair or unsafe interaction l m m 1(1%) 1(2%) 2(7%)

Other protocol vulnerabilities - l 3(2%) 1(2%)

A
ux

ila
ry

Se
rv

ic
es

Faulty web development - 1(1%)
Faulty operation Compromised private key / wallet l l l 22(12%) 3(7%)

Weak password l 1(2%)
Deployment mistake n n n n n 6(3%) 5(17%)

Off-chain oracle manipulation Malicious oracle updater l l l l n n n n n 4(9%) 5(17%)
Malicious data source l l l l 4(9%)
External market manipulation l 1(2%)

Greedy operator Backdoor / Honeypot l l l 10(5%) 3(7%)
Insider trade or other activities l 3(2%) 1(2%)
Phishing attack 2(1%)
Authority control or breach of promise l n n n n n n n mmmmm 13(7%) 1(2%) 12(40%)

Faulty blockchain service provider Faulty wallet provider
Faulty API / RPC l l 2(5%)

Other auxilary vulnerabilities - 2(1%)
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expect rational investors’ risk aversion to information shocks
will diverge the token price in the equilibrium and lead to
abnormal returns (ARs) [69], [70]. We choose the capital
asset pricing model (CAPM) as the benchmark for normal
returns. We refer interested readers to Section B in the
appendix for the detailed steps of deriving CAR.

• Total Value Locked (in USD): TVL is calculated as the
product of the total token balance held by a protocol’s
smart contracts and token price in USD [168]. Greater TVL
indicates greater value of assets that can be potentially
compromised under DeFi incidents. We attain the pre-attack
TVL for 126 incidents using DeBank15 and DeFiLlama [1].

• Audit Status: For each incident, we manually search audit-
ing histories from the following four sources: (i) a protocol’s
website; (ii) a protocol’s social media and blog post (e.g.,
Twitter and Medium); (iii) public git repositories; (iv) a
search engine (i.e., Google). We then label each incident
according to the following rules: (Audited): the victim smart
contract is audited prior to the incident; (Partially Audited):
audits are performed before the incident, but not for the
specific victim smart contract or for an older version; and
(Not Audited): no audit history is found prior to the incident.

• Emergency Pause, Disclosure and Reimbursement: We
crawl the following three features in an attempt to measure a
protocol’s reactive defense: (a) Did the protocol disclose the
incident within 20 days?16 (b) Has the protocol reimbursed
its users within 20 days? and (c) Did the protocol execute
a circuit breaker [169] or emergency pause? We manu-
ally search for auditing histories from the following three
sources: (i) public announcements on a protocol’s website;
(ii) a protocol’s social media and blog post (e.g., Twitter and
Medium); and (iii) the protocol’s main discussion forum.

Limitations: Our methodology has the following limitations:
• Soundness: Because our data crawling process is heavily

reliant on manual labor, human errors may occur. To mit-
igate this limitation, we cross-validate our data with ex-
ternal sources whenever possible. Additionally, we conduct
internal data reviews through pull requests. Each incident
is reviewed by at least two paper authors before the pull
request is merged.

• Completeness: - Despite that Ethereum and BSC account
for 77% of the total DeFi NVL (cf. Section I), incidents’
features, such as adversarial behavior and deployed defense,
on other DeFi enabled blockchains can differ. To ensure
the paper’s reproducibility, we only consider fully disclosed
incidents that can be found through public sources. While
incomplete, this DeFi incident dataset is the largest available
collection that we are aware of.

• Bias: - Our incidents dataset is gathered from three publicly
sources (e.g., Rekt News, Slowmist and Peckshield). These
three sources are, to our knowledge, the most extensive
DeFi incident databases accessible. Unfortunately, none of
these three sources explicitly document their data collection

15https://open.debank.com/, accessed on September 30, 2021
16We choose a custom time frame as an example.
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Fig. 3: Monthly number of DeFi incidents and total loss
(in million USD) for Ethereum and BNB Smart Chain
from Apr 30, 2018 to Apr 30, 2022, in comparison to the
total value locked. According to our data, the frequency, and
monthly loss increase as the TVL increases.

process. As a result, we are unable to evaluate whether these
sources contain bias, and our dataset may therefore inherit
the sampling bias from these sources17.

IV. ANALYSIS

A. Incident Frequency

Figure 3 shows the monthly number of incidents in relation
to the total monthly loss. We find that the majority of the DeFi
incidents occur after late 2020, with the peak in August 2021,
when nearly 600 million dollars are lost in a single month.

Despite the fact that BSC is a relatively new blockchain, it
experienced 69 DeFi incidents. We discover that 29 of the BSC
incidents are exploiting PRO layer design flaws. In particular,
between the 19th of May and the 3rd of June 2021, we observe
recurring exploits on a group of forked protocols18. The time
frame of 15 days suggests that attackers do not yet have
automated tools to scan and reproduce similar incidents.

Figure 4 illustrates the incident frequency per group and
the involved system layer. Overall, we find that the frequency
of all incident types increase over time from 3.1 per month
in 2020 to 8.5 per month in the first four months of 2022
on average (2.74×). We also observe that the most common
incident cause are SC Layer (42%), PRO Layer (40%), and
AUX Layer (30%) vulnerabilities.

B. DeFi Protocol Types

Table IV groups the incidents that we collect based on
their protocol/application type. We find that yield farming
protocols and cross-chain bridges incur 44% of the total

17For example, our methodology only includes BEV incidents disclosed
in the three abovementioned sources. For detailed BEV studies, we refer the
interested reader to the rich corpus of previous works [40]–[43], [101]

18PancakeBunny suffered a performance fee minting attack on May
19, 2021, where the adversary manipulated the on-chain oracle and siphoned
$45M in profit. Within two weeks, the copycats Autoshark, MerlinLab and
PancakeHunny were exploited in a similar fashion: the adversary (i) exploited
the vulnerability of mintFor/mintForV2 function to manipulate LP token
prices and (ii) used cross-chain bridge and TC to launder money.
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Other
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Fig. 4: Loss (in million USD) and frequency of DeFi incidents
on Ethereum and BNB Smart Chain from Apr 30, 2018
to Apr 30, 2022 grouped by incident cause. Each circle
represents a unique incident, and the size of the circle is
proportional to the estimated monetary loss in USD.
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Is the monetary loss related to the type of the DeFi protocol?

Loss (in M USD) 868 860 485 450 286 200 72 32 14 713
Pct. of Total Loss 22% 22% 13% 12% 7% 5% 2% 1% 0% 18%

Is the number of the security incidents related to the type of the DeFi protocol?

Num. of Incidents 50 10 22 28 7 7 7 6 3 49
Pct. of Incidents 27% 5% 12% 15% 4% 4% 4% 3% 2% 27%
TVL (in B USD) 9.2 11.4 18.2 27.7 - - 0.5 2.2 0.6 -

Is the vulnerability type related to the type of the DeFi protocol?

SC layer related 48% 60% 50% 39% 43% 0% 0% 50% 33% 43%
AUX layer related 20% 30% 18% 29% 0% 43% 71% 50% 33% 47%
PRO layer related 52% 10% 59% 39% 86% 29% 43% 17% 33% 24%
NET layer related 0% 0% 5% 4% 0% 14% 0% 0% 0% 2%

TABLE IV: Loss (in million USD) and frequency of DeFi
incidents grouped by application type, on Ethereum and BNB
Smart Chain from Apr 30, 2018 to Apr 30, 2022. We crawl
TVL for each category from DeFiLlama on Aug 6, 2022.

monetary loss, although their total TVL is only 20.6 billion
USD (30.2%). In contrast, DEX protocols have the biggest
TVL (27.7 billion USD, 40.6%), but have only incurred a
loss of 450 million (12%). In addition, we observe that the
distribution of vulnerabilities varies per protocol type. For
example, 86% and 59% of the incidents related to stablecoins
and lending involve PRO layer vulnerabilities respectively,
which is significantly higher than other protocol types.

C. Structural Equation Modeling

In this section, we apply Structural Equation Modeling
(SEM) [170]–[180] to test and measure causal relationships
between variables (cf. Figure 5 and Table V).
• What is SEM: SEM refers to a collection of techniques

to examine “latent variables” that are assumed to exist
but cannot be directly observed. In more detail, SEM is
a multivariate analysis technique that supports a flexible
hybrid of confirmatory factor analysis (CFA) [181]–[183]
and latent structural regression [180], [184]. An SEM model
encompasses two sub-models [185] (cf. Equation 2): (i) a
measurement model that conducts CFA to test the hypoth-
esized relationships between a given latent variable and its
corresponding observed variables; and (ii) a structural model

Latent
Variable

Observed
Variable Description

Preventive
Defense

PD1 Was the victim protocol audited before the incident?
PD2 Does the victim protocol support emergency pause?

Asset A1 Total value locked (TVL, in USD)

Reactive
Defense

RD1 Duration between incident occurrence and emergency pause
RD2 Was the incident disclosed?

Harm H1 Cumulative abnormal return (CAR) (in %)
H2 Total monetary loss (in USD)

TABLE V: Latent and observed variables we construct in
structural equation modeling (SEM).

-0.173 
p-val: 0.21

PD1
1

1

1

PD2

Preventive
Defense

Asset

Harm Reactive
Defense

0.297 
p-val: 0.04

-0.729 
p-val: 0.00

A1

2.420 
p-val: 0.00

H1 H2 RD1 RD2

1 1.288 
p-val: 0.00 1 4.630 

p-val: 0.00

Latent Variable Observed Variable/ 
Reflective Indicator

Loading/ 
Path Coefficient

Fixed loading/ 
Fixed path Coefficient

Fig. 5: Structural equation model (SEM) after fitting.

that performs latent structural regression to infer the causal
relationships between different latent variables.

{
η = Bη + ε (structural model)
y = Λη + δ (measurement model) where:

η and y are vectors of latent and observed variables;
ε and δ are independent error terms.

(2)

• Why SEM: The literature [186] utilized SEM to study
latent variables in cyber risks. In this work, we apply
similar techniques to measure the causal relationships in
DeFi incidents. To this end, we do not consider approaches
that are unable to support causal inference in the presence
of latent variables, such as linear mixed models [187] and
dimensional reduction techniques [188]. Previous literature
suggests the causal Bayesian network being the best alter-
native to SEM. However, it requires at least 1000 samples
to get a satisfactory performance. With limited samples of
DeFi incidents, we consider SEM a more suitable approach.

• Specification: Our model consists of four latent variables,
including one endogenous/dependent variables (i.e., harm),
and three exogenous/independent variables (i.e., asset, pre-
ventive defense and reactive defense). We measure one or
two observed variables for each latent variable (cf. Table V).
To construct the causal graph, we employ a variation of the
hypothesis by Wood and Böhme [186]: preventive defense,
reactive defense and asset jointly affect harm.

• Estimation: We utilize a logarithmic price scale to trans-
form monetary values (e.g., TVL and monetary loss). We
then further apply min-max normalization to convert contin-
uous variables to values in range [0, 1]. Categorical values

8



Duration after the incident starts ≤ 1h ≤ 6h ≤ 12h ≤ 24h ≤ 48h
Number of protocols 1 24 11 7 8

Percentage (out of 87 protocols) 2.% 47% 22% 14% 16%

TABLE VI: We quantify the speed at which DeFi protocols
execute their emergency pause. Out of the 51 DeFi protocols
that allow an emergency pause, the fastest has initiated a pause
within the first hour of an incident.

are mapped into ordinal values192021. We fit our SEM using
an open-sourced library, semopy [185] (cf. Figure 5).

• Fitness: Our model is examined using a collection of
indices, including (i) the adjusted Chi-square ( χ2

DoF ) [189];
(ii) goodness of fit index (GFI) [172]; (iii) comparative fit
index (CFI) [190]; and (iv) normed fit index (NFI) [191].
The majority of indices conform to their commonly accepted
value in the literature except adjusted Chi-square22.

• Analysis: Our findings suggest that the latent variable
“harm” increases with “asset exposure”, which conforms
with previous security research. We also find that harm
decreases if the latent variable “reactive defense” increases.
To our surprise, the p-value for preventive defense is high
(0.21), meaning that our model does not find strong evidence
to suggest preventive defense reduces harm.

• Limitations: Our primary limitation is the relatively small
sample size. In the event that the number of DeFi incidents
increases in the future, our model should be re-evaluated
and cross-validated using additional causal experiments.

D. Emergency Pause

DeFi protocols may support an emergency pause, which is
analogous to circuit breakers [169] in conventional centralized
exchanges. This section examines the speed at which DeFi pro-
tocols initiate an emergency pause (cf. Table VI). According to
our data, 87 of the 183 victims support the emergency pause
mechanism (47.5%). However, only 51 of the 87 protocols
(58.6%) pause their protocol within 48 hours, and only one
protocol pauses within the first hour of the incident. Our
statistics suggest that DeFi protocols may not yet have just-
in-time intrusion detection mechanisms to identify abnormal
protocol states or malicious transactions, which limits the
effectiveness of an emergency pause mechanism.

E. Effectiveness of Security Audits

Section IV-C studies the influence of security audits on
harm, by performing causal inference analysis (e.g., SEM) on
past incidents only. In the following section, we will attempt
to estimate the effectiveness of security audits.
• Additional Crawling To measure security audit effective-

ness, we: (i) Crawl all DeFi protocols via DeFiLama’s
API [1]. Out of the 1080 protocols listed on DeFiLama, 776

19PD1: {Not Audited→ 0, Partially Audited→ 0.5,Audited→ 1}
20PD2: {No Emergency Pause→ 0, Supports Emergency Pause→ 1}
21RD2: {Not Disclosed→ 0,Disclosed→ 1}
22Previous works suggest that the fit should be ≤ 5 for adjusted Chi-

square [192], and ≥ 0.9 for GFI [193], CFI [194] and NFI [191]. Our model
yields an adjusted Chi-square of 4.44, GFI of 0.96, CFI of 0.97, NFI of 0.96.

First incident transaction Last incident transaction Contract deployment 

Rescue time frame Incident time frame
time

Fig. 6: An adversary A can deploy a smart contract with
transaction txdeploy and then initiate an incident by calling
the contract with txfirst. Alternatively, the adversary may
directly initiate the incident with txfirst in one of two ways: (i)
without using a smart contract; or (ii) by batching the contract
deployment and the initiation in a single transaction.

are relevant to Ethereum and BNB Smart Chain. (ii) We
map the DeFiLama dataset with our incident dataset and
find that 56 of the 776 protocols have been exploited
before Apr 30, 2022. (iii) We construct a new audit dataset
by taking snapshots and merging DeFiLlama and DeFiYield
audit databases [195] on June 20, 2022.

• Result According to our data, 23 of the 563 audited proto-
cols (4.09%) have been attacked at least once, whereas 33 of
the 213 non-audited protocols (15.49%) have been attacked.
Hence, our data indicates that a security audit can decrease
the average probability of an exploit by a factor of four. Due
to the small sample size of only 56 matched incidents, our
result can only be considered as a rough approximation.

V. INCIDENT DEFENSE

A. Rescue and Incident Time Frame

In the following, we investigate the rescue and the incident
time frame (cf. Figure 6). The rescue time frame is the time
between the adversarial contract deployment (txdeploy) and the
execution time of the first malicious state transition (txfirst).
While the adversarial smart contract bytecode is already pub-
licly available in the rescue time frame, the incident has not
yet occurred. As such, defensive tools can theoretically reverse
engineer the contract bytecode and determine its strategy
using methods such as symbolic analysis, static analysis, and
fuzzing, potentially mitigating or preventing harm. To our
knowledge, no such just-in-time tool exists yet, which may
explain why adversaries do not batch txdeploy and txfirst into a
single transaction yet (cf. Figure 7). The incident time frame,
is the time that elapses between the execution of the first and
last harmful state transition transactions. An A may prefer
to keep the incident period as short as possible to maximize
the attack’s success rate, which however may not always be
possible due to gas constraints, protocol design, etc.

Figure 7 lays out the durations of the attack and rescue time
frames. We discover that 103 (56%) attacks are not executed
atomically, granting a rescue time frame for defenders. PRO
layer incidents have the shortest average rescue time frame
duration of 1h ± 4.1. The “Formation.Fi” incident has the
longest rescue time frame, lasting approximately 25 days.

B. Bytecode Similarity Analysis

In the smart contracts ecosystem, code cloning has been
utilized to measure the code similarity of deployed con-
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Fig. 7: The incident and rescue time frame per incident type.
For example, we observe that 34 of the 46 PRO layer only
incidents (74%) deploy smart contract(s) prior to the incident.
The average rescue time frame for PRO layer is 1±4.1 hours,
with the longest rescue time frame being 26.5 hours.

Category Similarity
Threshold

Contracts Unique Incidents
Total Clusters Detectable Total Clusters Detectable

Vulnerable 100% 38 7 31 5 2 3
80% 85 26 59 50 23 27

Adversarial 100% 29 6 23 0 0 0
80% 73 23 50 31 13 18

TABLE VII: We perform bytecode similarity analysis on
our incident dataset, which includes in total 173 vulnera-
ble and 155 adversarial contracts. We identify 7 clusters of
“exact match” vulnerable contracts (in total 38 vulnerable
contracts), where contracts within the same cluster have a
pairwise similarity score of 100%. Therefore, we infer that
38 − 7 = 31 vulnerable contracts could be detected prior to
the incident by comparing with previous known vulnerable
contracts. Similarly, we infer that 23 adversarial contracts
could be detected by comparing with previous known attacks.

tracts [196], identify plagiarized dApps [197], and vulnera-
bility detection [198]. In this work, we employ code cloning
to quantify bytecode similarity between all exploited DeFi
protocols and adversarial contracts studied in this work. Note
that we choose to perform our study at the deployed bytecode
level as opposed to the source code level, because smart
contract developers can close-source the contract code.

Methodology: Our code cloning detection method is inspired
by the works of Kiffer et al. [196] and He et al. [197].
Specifically, to group similar smart contracts, we first identify
and remove the Swarm code part from the bytecodes as it
is not served for execution purposes. Then, we disassemble
the bytecodes and remove the PUSH instructions’ arguments.
Next, similar to [196], we compute hypervectors of n-grams
(n = 5) of Ethereum opcodes for each contract. In order to
compare two contracts, we compute the Jaccard similarity of
their respective hypervectors. Finally, to cluster smart contracts
into groups, we require a similarity score greater than 80% that
the previous study suggests [196] [197].

Results: Table VII presents the results of the similarity anal-

ysis. We apply the above-mentioned methodology to clus-
ter 173 vulnerable contracts and 155 adversarial contracts in
our dataset. Using a similarity score threshold of 80%, we
group vulnerable and adversarial smart contracts into 26 and
23 clusters, respectively. In addition, we note that in some
clusters, all contracts are associated with a single incidence.
To address more intriguing questions, such as how many
comparable adversarial contracts attack different protocols (or
different vulnerabilities in the same protocol), we restrict each
cluster to a single contract per incident (c.f. Table VII).

We manually investigate the remaining clusters to acquire
additional insights. For the vulnerable contracts, the clusters
contain contracts that are part of DeFi protocols with similar
functionalities (e.g., bridges and yield farming applications).
Additionally, the exploitation of identical contracts is nearly
equal (e.g., exploiting the same issue with equivalent transac-
tions). In contrast, for similar vulnerable contracts, the exploits
are not the same, but the incident cause is typically the same.
For example, we identify two adversaries that exploit an issue
on the same function in two smart contracts used as bridges,
which fork the same smart contract. Specifically, although the
implementation of the function is slightly different in the two
contracts, both protocols introduce a vulnerability in the exact
function while forking and modifying the same contract.

The most notable outcome of our similarity analysis is the
identification of clusters of adversarial smart contracts that
target distinct DeFi protocols with similar vulnerabilities (e.g.,
oracle manipulation). An analysis of historical blockchain data
could reveal more adversarial smart contracts. Furthermore,
we could potentially identify adversarial smart contracts in
real-time, given that the time frame is long enough, by ap-
plying a more sophisticated similarity detection technique that
could work on a more fine-grained level (e.g., function-level).
Combining this with other program analysis techniques could
potentially mitigate or prevent exploits (c.f. Section V-A).

Limitations: Our methodology cannot cluster similar con-
tracts that employ different compilers and optimization
choices. In addition, if an adversary choose to obfuscate the
bytecode by, for example, injecting unused function code into
the contract, our method becomes less effective. We therefore
highlight the application of more sophisticate strategies as an
interesting avenue for future work [199].

C. Front-Running as a Service (FaaS) Usage
FaaS are servers to which a trader’s transactions can be

privately forwarded to miners that peer with the FaaS. We
find that at least 18 incidents are executed through FaaS using
Flashbots API on Ethereum. The first attack going through
Flashbots happened on July 12, 2021.
• Arbitrageurs Accelerate Attacks: We manually examined

each Flashbots bundle and discover that 6 of the 18 incidents
appear to be accelerated by, e.g., arbitrage traders. We find
that this is due to adversaries conducting incidents with sub-
optimal strategy, resulting in extractable BEV opportunities.
Trading bots will then compete for these BEV opportunities
by back-running incident transactions with FaaS.
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Algorithm 1: Source of Funds Tracing Algorithm
Input: Current highest block bcurrent; Tracing address

T ; Starting block for post-incident tracing
bpost;

# Transaction nonce equals the number of transaction
sent; Algorithm OneHopPreIncidentTracing(T ,
bcurrent):
bfirst ← Binary search between block 0 and
bcurrent where T ’s nonce equals 0 in bfirst, and
T ’s nonce greater than 0 in bfirst + 1.
bfunding ← Binary search between block 0 and
bfirst where T ’s balance is greater than 0
in bfunding and T ’s balance equals 0
in bfunding − 1.

foreach tx ∈ {tx0bfunding
, . . .} do

if Replay tx and finds native token transfer to
T then

return tx
end

end
end

tim
e

...
... ...

... Incident

Money transfer 
happens before
the first tx of B

Pre-incident 
tracing

A B

Fig. 8: Overview of the money tracing methodology. We start
with the adversarial address (A), then iteratively determine the
addresses that provide the initial source of funds (i.e., X2 and
X1, analogous to depth-first search).

• Private Adversarial Transactions: Adversaries can execute
an incident using FaaS services, without broadcasting any
transactions on the public blockchain P2P network. As a
result, only entities with sequencer knowledge (K2) are able
to defend against these adversaries (e.g., perform bytecode
similarity analysis) prior to transaction confirmation.

D. Money Tracing

Adversaries require a source of funds to issue transactions
to execute incidents. A may attempt to break the linkability
of their source of funds to evade potential legal ramifications.
This section proposes a money tracing methodology to analyze
the pre-incident flow of funds (cf. Figure 8).

An incident’s source of funds is usually originating from a
native coin transfer, e.g., from an address X to an address Y ,
i.e., X → Y . We apply Algorithm 1 to identify the funding
transaction X → Y for address Y . We abbreviate our
notation with X

h−→ Y , representing h hops transfer (i.e.,
X → I1 → . . . → Ih−1 → Y ). To our knowledge, the
current literature has not proposed any methodology to trace
an incident’s source of funds on an account-based ledger.

Pattern Total h = 1 h = 2 h ≥ 3

Pre-incident (76 incidents in total, excluding U2-non-monetary adversaries)

Centralized Exchange h−→ A 128(49.0%) 40(15.3%) 23(8.8%) 65(24.9%)

Tornado.Cash h−→ A 94(36.0%) 67(25.7%) 19(7.3%) 8(3.1%)

Typhoon.Network h−→ A 9(3.4%) 6(2.3%) 2(0.8%) 1(0.4%)

Mining Pool h−→ A 7(2.7%) - 1(0.4%) 6(2.3%)

Cross-chain Bridge h−→ A 5(1.9%) 3(1.1%) 2(0.8%) 0(0.0%)
Unknown 18(6.9%)

TABLE VIII: Source of funds identified for all 261 adver-
saries. h represents the number of hops (i.e. transactions)
from the source of funds, e.g., In total, 73(28.0%) adversaries
(92(50.8%) incidents) source the funds directly from a mixer.

• Centralized Exchange: We observe that 12(7.3%) (on
Ethereum) and 21(8.0%) (on BSC) adversaries directly
withdraw from exchange wallets (h = 1). The identities
of these attackers can be revealed if the corresponding
exchanges comply with Know Your Customer (KYC) re-
quirements. For indirect exchange withdrawals (h > 1), we
can only determine that A is linked to the withdrawer, but
not whether the withdrawer is the attacker.

• Mixer: 55(21%) (on ETH) and 12(4.6%) (on BSC) ad-
versaries receive their initial funds directly from a mixer
(h = 1). Note that we classify a mixer as the source of
funds only if a so-called relayer executes the withdrawal
transaction (i.e., a third-party paying the transaction fees
in the native blockchain coin); otherwise, we assume that
the withdrawal fee payer is linked to the withdrawer and
continue tracing the money flow. Relayers help to break
address linkability, by paying the transaction fees (gas
fee) of mixer withdrawal transactions in exchange for a
commission on the withdrawal value.

• Cross-chain Bridge: Four attackers directly withdraw their
source of funds from a blockchain bridge (h = 1).

Linked Incidents We discover that the adversarial address
in 13 incidents can be linked to another incident’s adversary
within three hops (cf. Table X in the appendix).
Limitations We utilize Ether- and Bscscan23 to identify the
addresses of centralized exchanges and cross-chain bridges.
Our dataset therefore inherits potential data completeness
issues from Ether- and Bscscan.

VI. DISCUSSION

DeFi Incidents — Another Cat and Mouse Game: Analog
to traditional information security, DeFi incidents can be per-
ceived as a cat-and-mouse game, in which defenders attempt
to minimize the security risk surface while attackers breach
defenses. In the following, we extract insights on the current
state of this contest, highlight key findings, discuss their
implications and make recommendations for future research.
1) Insight - Understudied NET and CON incidents: We

observe that NET and CON-related incidents are studied
in 29% and 26% of academic papers (excluding tools,
SoKs and surveys). However, only two tools (SquirRL [83],

23https://etherscan.io/labelcloud and https://bscscan.com/labelcloud.
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Layers Surveys/SoKs Tools Papers Audit reports Incidents

F G F G F G F G F

Total 7 29 42 30 181

NET 4(57%) 19% - - 12(29%) 4% - - 4(2%)

CON 3(43%) 13% 2(7%) 2% 11(26%) 5% - - 0(0%)

SC 6(86%) 31% 26(90%) 20% 15(36%) 4% 29(97%) 35% 77(42%)

PRO 5(71%) 13% 15(52%) 6% 12(29%) 3% 19(63%) 14% 73(40%)

AUX 4(57%) 10% 2(7%) 1% 6(14%) 2% 14(47%) 5% 56(30%)

TABLE IX: Distributions of works under investigation accord-
ing to the DeFi reference frame (cf. Section II-A). F - the
number and percentage of research items related to a system
layer; G - the average ratio of incident types each research
item covers. For example, 15 of the 29 tools (52%) relate to
PRO layer incidents, but each tool on average only covers 6%
of the common PRO layer incident causes we identify.

DeFiPoser [9]) as well as 2% and 0% of the in-the-wild-
incidents relate to the NET and CON layers, respectively.
While related works have surprisingly identified evidence
of miner misbehavior in block header timestamps for
financial gain [137], we note that: (a) it is not trivial to
identify NET and CON incidents with absolute certainty
(e.g., transaction censoring, selfish mining attack and block
reorganization attack); and (b) to our knowledge, no pub-
licly available tool can comprehensively detect potential
NET and CON incidents in DeFi. As such, we suspect that
more incidents have yet to be discovered. Furthermore,
we notice that none of the industrial DeFi audit reports
explicitly address potential NET and CON incidents, while
some companies have previously performed NET and CON
auditing for layer 1 and 2 blockchains24.

2) Challenge - Low coverage for PRO incidents: SC and
PRO layer incidents are the most common incident type
(42% and 40%, respectively). Security tools, however,
only cover 52% of the PRO layer incident types on
average, which is less than SC layer (90%). As such, our
dataset indicates that most defense tools still focus on SC
vulnerabilities. The literature, however, suggests that the
development of effective and generic PRO incident defense
tools remains an open security challenge [9]. This is mainly
due to DeFi’s composability feature, which leads to action
path explosion in detecting PRO layer vulnerabilities.

3) Insight - Repeated on-chain oracle manipulation: We
discover 28 (15%) on-chain oracle manipulation incidents
on Ethereum and BSC, which is the most common PRO
layer incident type. On-chain oracle manipulation is one
type of composability attack, which implies the adversary
has C3

PRO capability. Repeated on-chain oracle manipula-
tion indicates the need for tools to automatically identify
such attack. To our knowledge, only DeFiRanger [97] and
DeFiPoser [9] can detect oracle manipulation vulnerabili-
ties. DeFiRanger can only identify observed attack transac-

24TrailOfBits for example audits many L1 and L2 blockchain projects, such
as Arbitrum, THORChain, ZCash, etc. (https://github.com/trailofbits/publica
tions#blockchain-protocols-and-software)

tions, whereas DeFiPoser can identify new vulnerabilities
in real-time, but necessitates manual and costly modeling
of the captured DeFi protocols.

4) Insight - Permissionless interactions are dangerous: The
permissionless interactions between various DeFi protocols
can further broaden the attack surface. According to our
dataset, in 19 (10.5%) incidents, adversaries utilize or
deploy a contract (C5

PRO), which complies with the accepted
ABI interface, but contains incompatible implementation
logic that causes harm25. The underlying cause of these
incidents is that the victims only constrain the contract
function interface, not how the contract is implemented.
We are, however, unaware of any viable way to efficiently
verify code implementation on-chain due to the limitations
of the current SC layer design. An alternative solution for
constraining the contract with which a protocol or its user
interacts is to implement a whitelist, where a DeFi protocol
can only interact with other protocols in the whitelist.

5) Insight - The identities of the attackers may still be
revealed: Although mixers are available on both Ethereum
and BSC, our empirical result shows that only 38% of
attackers obtain their source of funds from mixers (i.e.,
C1

PRO). The majority of attackers interact with AUX ser-
vices, such as centralized exchanges, and mining pools,
which may provide stored personally identifiable informa-
tion upon regulatory requests. Note that we naively assume
mixers leaking the least side-channel information compared
to other methodologies. Wang et al. [29] develop heuristics
to reduce the anonymity set of Tornado.cash and Typhoon
mixers on Ethereum and BSC. Quesnelle et al. [200]
and Kappos et al. [201] investigate Zcash and show that
the anonymity set size can be significantly reduced using
simple heuristics to link transactions. Tran et al. [202] and
Pakki et al. [203] show that existing mixer services are
vulnerable to various threats such as permutation leak.

6) Insight - Adversaries can be front-run during the
rescue time frame: Su et al. [99] discover that blockchain
adversaries test their code by sending several transactions
to the victim protocol before the actual attack. We initially
questioned this finding because anyone can inspect the
adversarial smart contract bytecode and transactions on the
P2P layer, and therefore can front-run the adversaries to
rescue the victim protocol. The optimal strategy for A is
to emulate the state transitions off-chain, then deploy and
exploit in one single transaction (i.e., the capability C4

PRO).
Surprisingly, our empirical results support Su et al. [99]
(cf. Section V-A). We encourage the development of tools
to front-run adversaries during this rescue time frame.

7) Challenge - Absence of intrusion detection tools: Only
one incident in our dataset has triggered the emergency
pause within the first hour of the incident. This indicates the
absence of intrusion detection tools to automatically trigger
emergency pauses. We anticipate that just-in-time detection

25i.e. the following incident types: (i) token standard incompatibility; (ii)
camouflage a token contract or (iii) camouflage a non-token contract
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of abnormal protocol states or malicious transactions will
receive increased attention in future studies.

8) Insight - Adversarial and vulnerable contracts are
detectable: We show that SoTA similarity analysis can
detect vulnerable and adversarial contracts. For instance,
we identify 31/23 exactly matching vulnerable/adversarial
contracts (i.e., bytecode similarity score of 100%) when
compared to previously known incidents.

VII. RELATED WORKS

Cyber Risks: Sheyner et al. [204] outline an algorithm that
can automatically generate attack graphs and analyze network
security. Wang et al. [205] present a framework for measuring
various aspects of network security metrics based on attack
graphs. Khan et al. [206] propose a generalized mathematical
model for cybersecurity that quantifies a set of parameters
including risk, vulnerability, threat, attack, consequence, and
reliability. Amin et al. [207] adopt the structural Bayesian Net-
work to capture the relationship between financial loss, cyber
risk and resilience, as well as developed a scorecard based
approach to qualitatively assess the level of cyber risk. We
refer interested readers to an SoK that thoroughly categorizes
previous cyber risk studies [186]. While the research literature
of cyber risks span over 30 years, DeFi is a relatively recent
area with fewer works (cf. Table III).
DeFi Security: This paper proposes a five-layer system model
as well as a comprehensive taxonomy of threat models that are
used to measure and compare DeFi incidents. In the following,
we present an overview of the most recent DeFi related
survey and SoK papers, while highlighting the differences to
contrast our work. Praitheeshan et al. [10] identify 19 software
security issues and 16 Ethereum smart contract vulnerabili-
ties, with 14 of them on smart contract layer. Homoliak et
al. [11] present a stacked security model with four layers and
systemized the vulnerabilities, threats, and countermeasures
for each layer. Unfortunately, this research is not able to
cover any smart contract layer vulnerabilities. Saad et al. [12]
categorize 22 attack vectors in terms of its vulnerability
origins (i.e., blockchain structure, P2P system and blockchain
applications) and analyze the entities (e.g., miners, mining
pools, users, exchanges, etc.) involved in each types of attacks.
However, their examinations on protocol layer vulnerabilities
and third-party vulnerabilities are conspicuously inadequate.
Chen et al. [13] provide a comprehensive systematization of
vulnerabilities, attacks, and defenses on four blockchain layers
with detailed discussion on the relationships between them.
Despite being able to cover in total of 40 vulnerabilities, this
study does not state any vulnerabilities that are related to DeFi
composability. Werner et al. [14] present a systematization
of DeFi protocols and dissected DeFi related vulnerabilities
with respect to technical and economic security. Nonetheless,
this study lacks in-depth analysis of consensus and network
layer vulnerabilities and does not provide generic measures to
quantify the harm of DeFi incidents. Atzei et al. [15] inves-
tigate the security vulnerability on Ethereum and provided a
taxonomy of the common programming pitfalls. Nevertheless,

the vulnerability coverage of this work is unsatisfactory as it
exclusively focuses on smart contract layer. Samree et al. [16]
identify 8 application level security vulnerabilities on the smart
contract layer, analyze past attack incidents and categorize
detection tools. However, this study also focuses on addressing
smart contract vulnerabilities. Wan et al. [121] conduct 13
interviews and 156 surveys to investigate the practitioners’
perceptions and practices on smart contract security. They,
however, do not reveal how much effort was allocated into
the security of each system layer. For studies and tools related
to specific incidents, we refer interested readers to Table III.
Code Cloning: Code clone detection has been extensively
explored in the literature for both source code [208] and binary
programs [209]. Token based [210], tree based [211], graph
based [212], text based [213], and deep learning based [214]
techniques are the most prevalent techniques explored for code
cloning. Applications of code cloning include bug detection,
malware detection, patch analysis, plagiarism detection, and
code similarity [208], [209], [215], [216]. Smart contract code
cloning has been utilized primarily for computing duplica-
tion [196]–[198], [217]–[220] and vulnerability search [198],
[217]. In this work, we apply a code cloning detection for
comparing vulnerable and adversarial smart contracts.
Blockchain money tracing and account linking: Androulaki
et al. [221] evaluate the privacy provisions in Bitcoin and
show that nearly 40% of user profiles can be recovered.
Meiklejohn et al. [222] apply heuristic clustering to group
Bitcoin wallets. Yousaf et al. [223] develop heuristics allowing
to trace transactions across blockchains. Victor [224] proposes
heuristics to cluster Ethereum addresses by analyzing the phe-
nomena surrounding deposit addresses, multiple participation
in airdrops and token transfer authorization on Ethereum.
The most relevant paper to this study is Su et al. [99],
which analyze adversarial footprints and operational intents
on Ethereum. In this work, we examine adversarial money
flow before the attack to determine the source of funds.

VIII. CONCLUSION

This paper constructs a DeFi reference frame that cate-
gorizes 77 academic papers, 30 audit reports, and 181 in-
cidents, which reveals the differences in how academia and
the practitioners’ community defend and inspect incidents. We
investigate potential defense mechanisms, such as comparing
victim/adversarial smart contract bytecodes, quantifying attack
time frames, and tracing each attacker’s source of funds. Our
results suggest that DeFi security is still in its nascent stage,
with many potential defense mechanisms requiring further
research and implementation.
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APPENDIX A
LINKED ADVERSARIES

Table X shows the linked adversaries based on source
of fund tracing. We have identified six clusters, where the
adversaries in five of the clusters are linked with three hops.

Suspects (A∗) Pattern Incident Date

0x8641dF2D7C730A8A24db86693fc39F7A74Dd4e9D

A∗ 2−→ A WildCredit May 27, 2021

A∗ 2−→ A DeFiSaver Oct 08, 2020

A∗ 1−→ A DODO Mar 08, 2021

A∗ 2−→ A VisorFinance Nov 26, 2021

A∗ 1−→ A MakerDAO Mar 12, 2020

0x5b1839B202b67Db64e402a1501cf4f52f5eff03c A∗ 3−→ A BuccaneerFi Mar 27, 2020

A∗ 1−→ A InfinityToken Jan 26, 2022

0xC1A065a2d29995692735c82d228B63Df1732030E A∗ 2−→ A SodaFinance Sep 20, 2020

A∗ 1−→ A BuccaneerFi Aug 24, 2020

0xE4b3dD9839ed1780351Dc5412925cf05F07A1939 A∗ 2−→ A bZx Sep 13, 2020

A∗ 1−→ A ForceDAO Apr 04, 2021

0x6bE5A267B04E9f24CdC1824fd38d63c436be91aB A∗ 2−→ A PancakeHunny Jun 03, 2021

A∗ 1−→ A BoggedFinance May 22, 2021

0x22B84d5FFeA8b801C0422AFe752377A64Aa738c2 A∗ 8−→ A MakerDAO Mar 12, 2020

A∗ 9−→ A BadgerDAO Nov 21, 2021

TABLE X: Linked adversaries based on pre-incident trace.

APPENDIX B
CUMULATIVE ABNORMAL RETURN (CAR)

We derive CAR with the following three steps:
1) Equation 3 fits β coefficient with the ordinary least square,

where Ri,t, Rmkt,t, rft denotes the token price, market
price and risk-free rate27 at tick t ∈ [Ts−144, Ts) respec-
tively, αi is the constant, and εi,t is the error term.

Ri,t − rft = αi + βi · (Rmkt,t − rft) + εi,t (3)

2) Calculate the ARs for each tick in the event timeframe
using Equation 4, where β̂i is the fitted β coefficient,
E[Ri,t] is the expected return of token i.

ARi,t = Ri,t−E[Ri,t] = Ri,t−(αi+β̂i(Rmkt,t−rft)+rft)
(4)

3) Report the minimal CAR in Equation 5 to capture the price
change pattern within the appearance of an anomaly.

CARi = mint[
∑

t′≤t
ARi,t′ ] (5)

time

24 hrs before the  
start of an attack

 the start time  
of an attack

 the end time  
of an attack

24 hrs after the  
end of an attack

Calculate AR in the Event window 
24hrs (144ticks) 

attack interval 1 tick= 10 minutes 

Fit Beta in the estimation window 
24hrs (144ticks) 

Fig. 9: Calculation of the cumulative abnormal return (CAR).

27Typically, the 1- or 3-month US treasury bill yield is used as a proxy
for rft . However, due to unavailable high-frequency yield data, we assume
rft = 0. Token prices are obtained from various on-chain smart contracts,
and the average price of Bitcoin and Ethereum is used as a market price proxy.
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